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Abstract—Considering the challenges posed by the space and
time complexities in handling extensive scientific volumetric
data, various data representations have been developed for the
analysis of large-scale scientific data. Multivariate functional
approximation (MFA) is an innovative data model designed to
tackle substantial challenges in scientific data analysis. It computes
values and derivatives with high-order accuracy throughout the
spatial domain, mitigating artifacts associated with zero- or first-
order interpolation. However, the slow query time through MFA
makes it less suitable for interactively visualizing a large MFA
model. In this work, we develop the first scalable interactive
volume visualization pipeline, MFA-DVV, for the MFA model
encoded from large-scale datasets. Our method achieves low input
latency through distributed architecture, and its performance can
be further enhanced by utilizing a compressed MFA model while
still maintaining a high-quality rendering result for scientific
datasets. We conduct comprehensive experiments to show that
MFA-DVV can decrease the input latency and achieve superior
visualization results for big scientific data compared with existing
approaches.

Index Terms—volume visualization, functional approximation,
big scientific dataset, distributed computing

I. INTRODUCTION

Advancement in instrumentation and technology has en-
abled scientists in diverse fields, such as medical imaging,
meteorology, materials science, and physical simulations, to
generate or obtain 3D volumetric datasets at an increasingly
rapid rate, which necessitate scalable volume visualization
solutions to facilitate scientists to explore and gain discoveries
from their datasets [12], [30]. However, creating volumet-
ric visualizations for large-scale scientific datasets presents
distinctive performance and quality challenges that require
comprehensive solutions to address them holistically.

First, managing substantial scientific datasets on hardware
systems with constrained memory resources and I/O bandwidths
presents significant space and time complexities. These com-
plexities can easily incur performance bottlenecks and further
complicate the task of delivering a smooth user experience
for interactively visualizing large-scale datasets. Researchers
have developed various techniques to address this performance
challenge. Out-of-core techniques [31] partition the dataset
into manageable chunks that can be rendered independently,
ensuring memory usage remains constant. Multi-resolution
volume rendering methods [34] decrease the volume of data
sent to the rendering pipeline based on zoom levels, rendering
data at higher resolutions only when required. Data compression

techniques [35] aim to reduce the size of datasets generated in
scientific research while preserving the essential information
for processing and visualization. Data streaming strategies [4]
facilitate an incremental rendering of a dataset as its availability
progresses by employing push and pull models. However, these
methods often compromise rendering quality (data compression
and multi-resolution methods) or input latency (out-of-core and
streaming methods).

Second, accurately retrieving values and gradients from
arbitrary positions within a 3D volumetric space is challenging
but necessary for volume visualization algorithms to generate
high-quality images. Popular interpolation methods for volume
visualization include low-order filters, such as nearest neighbor
search (NNS) and trilinear interpolation, and high-order filters,
such as tricubic and Catmull-Rom. However, these filters can
relatively easily generate artifacts in the interpolated values and
gradients. Functional data analysis [13], [28] uses functional
approximation to represent the original discrete dataset for
querying off-grid value and gradient with higher accuracy
through the computing of geometric bases. An important
consideration in functional data analysis involves selecting
the appropriate family of basis functions. Common choices
include Fourier [6], wavelet [15], and geometric splines [10]
bases. More recently, Austin et al. [1] introduced the Tucker
decomposition as a low-rank alternative. Majdisova and Skala
also suggested the use of radial basis functions for particle
data [21]. Multivariate functional approximation (MFA) [26]
is a new function approximation model with advantages of
high-order evaluation of both value and derivative anywhere
in the spatial domain, compact representation for large-scale
volumetric data, and uniform representation of both structured
and unstructured data. The initial discrete data require an
initial preprocessing step involving encoding or prefiltering [29],
[38] to obtain the sequence of coefficients of the interpolating
functions. However, the primary challenge when employing
functional approximation lies in its computational complexity,
making it less suitable for real-time applications with stringent
demands for information query latency. This latency becomes
more severe when handling large-scale datasets.

In this work, we aim to tackle both quality and performance
challenges, and propose a scalable volume visualization solution
for big scientific datasets. First, we select functional approx-
imation, specifically MFA, in our pipeline for its evaluation
accuracy and better rendering quality. Second, we utilize dis-



tributed computing to accelerate both data fetching latency and
rendering latency, so that the overall input latency of visualizing
a large-scale MFA model can satisfy the requirements of
interactive visualization. We name our proposed pipeline as
MFA-based distributed volume visualization (MFA-DVV). To
the best of our knowledge, this is the first work utilizing MFA
as a data representation with distributed computing to speed
up the rendering process for responsive user exploration of
large-scale scientific datasets. The main contributions of this
work include:

• A novel interactive volume visualization framework (MFA-
DVV) using the MFA model with distributed computa-
tional architecture to visualize big scientific datasets with
high quality and low input latency.

• Detailed performance analysis of critical components of
the proposed pipeline.

• Comprehensive experiments studying the effect of using
the compressed MFA model to optimize the performance.

The subsequent sections of this paper are organized as follows:
we first provide an overview of related work in Section II and
the background of MFA in Section III. Section IV outlines the
architecture and implementation of the proposed MFA-DVV.
Experimental results and evaluation are presented in Section V.
We draw our conclusions in Section VI.

II. RELATED WORK

A. Large-scale Volume Visualization

Researchers have developed various algorithms to visualize
large-scale scientific data, encompassing tasks such as isosur-
face computation, streamline computation, and I/O-efficient
volume rendering [5], [23]. Through the consideration of the
distance between the camera view and individual data segments
within the current view, multi-resolution techniques [34], [37]
intelligently load data segments at different levels of detail. This
approach reduces the volume of data loaded for rendering while
preserving a comparable level of rendering quality. Efficiently
accessing raw data in real-time visualization tasks such as
progressive slicing and particle traces can be facilitated by
employing strategies like an optimized disk data layout [25],
or by utilizing pre-computed lookup tables [8]. Cox and
Ellsworth [9] introduce a framework for out-of-core scientific
visualization systems. This framework involves modifying the
I/O subsystem to implement application-controlled demand
paging. The approach capitalizes on the observation that many
crucial visualization tasks only require access to a small portion
of extensive datasets at a given time. Similarly, Ueng et al. [33],
and Leutenegger and Ma [18] adopt a comparable strategy to
load data on demand for visualization tasks by reorganizing
the physical data on disk and employing structures like octrees
or R-tree partitions to handle both structured and unstructured
data.

B. Data Compression

The substantial size of large-scale scientific dataset results
in prolonged data retrieval times due to constraints in band-
widths of various I/O types. Lossy compression [16] can be

used to mitigate issues arising from I/O intensive workloads
during data storage and transfer. TTHRESH [2] (using Tucker
decomposition [3]), TAMRESH [37] (using global tensor
approximation [17] factor matrices), ZFP [19] (a floating-point
compressor using custom transform matrices), SZ [11] (using
best fit curve-fitting compression) and SQ [14] (preserving
connected and coherent regions) are popular choices. Although
some compression algorithms, like ZFP, support random-access
decompression [32], none have the ability to query at arbitrary
locations away from the sample locations of the original discrete
dataset, meaning they are subject to interpolation artifacts.
Multivariate functional approximation (MFA) can model large-
scale raw volumetric data into an MFA model with a compact
size. Various volume visualization techniques can directly
render results from the MFA model without referencing the
original data, enabling large-scale volume visualization under
limited memory resources.

C. Acceleration Techniques

Visualizing large datasets can be accelerated by leveraging
environments and platforms like multi-core CPUs, GPUs, and
high-performance computing (HPC) clusters [40]. Piringer et
al. [27] present a generic multithreaded visualization archi-
tecture that helps avoid pitfalls related to multithreading with
visual feedback. Piringer et al. [20] develop POIViz using radial
representation to compute a 2D layout of the multidimensional
dataset in parallel on CPU and GPU to improve the visualization
of large datasets on a single computer. GPU-based large-
scale volume visualization [5] combines the parallel processing
power with out-of-core methods and data streaming to improve
interactivity. In this work, we exploit distributed computing
power to develop a scalable volume visualization solution.

III. MULTIVARIATE FUNCTIONAL APPROXIMATION

A. Background

Multivariate Functional Approximation (MFA) [26] repre-
sents discrete high-dimensional scientific data using a functional
basis representation derived from the tensor product of B-
spline functions. The geometric characteristics of the field and
the values of the scientific data are captured and efficiently
represented through a collection of control points and knots.
Figure 1 illustrates the key steps to construct an MFA model
from input data. Initially, the system computes parameterization
and establishes an initial knot distribution with the minimum
required number of control points. Additional control points
and knots are dynamically introduced until all evaluated points
within each knot span meet the specified maximum allowable
relative error compared to the original points. During this
iterative process, knot spans exceeding the tolerance threshold
are subdivided, and the functional approximation is recalculated.
From the input data to its MFA model, various levels of
compression can be achieved by adjusting the number of control
points to generate a compact MFA model.



Fig. 1: Key steps to construct an MFA model from raw input
data. EMax is the maximum allowable relative error.

B. Advantages of MFA

In contrast to other local filters that aim to address numer-
ous small local optimization problems, MFA represents the
resolution of a solitary global optimization spanning the entire
domain. As a result, MFA gives more accurate approximation
than other high-order local filters like tricubic and Catmull-
Rom [36]. The detailed advantages of MFA are:

• While local filters either interpolate or precisely match
input points, MFA approximates them, which permits the
smoothing of high-frequency discretization artifacts while
retaining information about underlying low-frequency
patterns.

• Local filters tend to reduce continuity between successive
filter applications, whereas MFA, functioning as a global
model, maintains high-order continuity consistently across
the entire domain.

• Local filters determine their size and position by adapting
to the distribution of input points, effectively behaving
like a sliding window over these points. Conversely,
MFA distributes its piecewise polynomials based on
predetermined knot positions, which remain independent
of the input point distribution. These knot locations can
accurately reflect the data’s complexity rather than relying
on the input point distribution.

• Local filters may rely on finite approximations for gradient
calculations, resulting in approximate high-order deriva-
tives, especially at cell boundaries. On the other hand,
MFA provides analytical high-order derivatives, ensuring
precision in its gradient computations.

• Although the model is an approximation, its derived values,
including gradients, are analytically accurate. Additionally,
it offers analytical availability for higher-order derivatives,
extending up to the polynomial degree.

C. Opportunities for MFA

To achieve effective volume visualization, existing techniques
necessitate searching or retrieving values and gradients from

arbitrary locations within the volume. As a result, the latency
at which this information is retrieved determines the overall
performance of a volume visualization system. This retrieval
latency is particularly pronounced when handling large datasets.
While MFA excels at modeling large-scale scientific data in situ
and provides more accurate evaluations than many local filters,
its query time becomes the primary performance bottleneck
for visualizing the MFA model. Although MFA’s query time
outperforms popular high-order local filters such as tricubic
and Catmull-Rom, its query performance falls short when
compared to straightforward local filters like nearest neighbor
and trilinear interpolation. We aim to improve the performance
of volume visualization of the MFA model encoded from large-
scale datasets. We build a distributed volume visualization
architecture for rendering the MFA model with improved
overall input latency. Our work also utilizes the compressed
MFA model to achieve a better performance and rendering
quality than the general distributed volume rendering using the
raw discrete data through trilinear interpolation [39].

IV. METHODS

A. Architecture

Figure 2 shows the architecture of our developed MFA-
based distributed volume visualization pipeline, MFA-DVV,
for handling large-scale scientific datasets using multiple
processors of a computing cluster or supercomputer. There
are six key steps to generate the final visualization result.

1) Volume Partitioning: The input large-scale volume is
first partitioned into blocks that will be distributed among
processors. This step is a recursive binary partitioning until the
target number of partitions is achieved. The partition follows the
round-robin order among the volume’s x, y, and z directions. If
n recursions of partitioning are executed, then the total number
of partitioned blocks is 2n. The partitioned data block will be
the input of the MFA encoder to generate the MFA model.

2) MFA Encoding: Each partitioned block is encoded using
the MFA encoder with a configuration where the key encoding
parameters are the number of control points and the polynomial
degree. Control points serve as coefficients that scale piecewise-
continuous basis functions within the hypervolume of B-splines.
Typically, the quantity of control points is equal to or fewer
than the number of the input sample points. Meanwhile, the
polynomial degree represents the degree of the basis function
employed for modeling. The number of control points is the
key parameter to determine the actual size of the encoded
MFA model, which will be further evaluated in Section V-D.
Encoding is done following the previous partition step, and
partitioned blocks are processed together for encoding on
corresponding nodes in parallel.

3) Data Fetching: When the visualization starts, MFA
models are first fetched to the memory of each target node
for rendering. Each processing node only retrieves the MFA
model file encoded from the corresponding partitioned block.
The fetching time, determined by the I/O bandwidth, is one of
the key contributors to the overall input latency.



Fig. 2: Architecture of our MFA-DVV. In this example, the input data is partitioned into eight octants with identical size.

4) MFA-VV: An MFA-based volume visualization (MFA-
VV) pipeline generates the required visualizations, like volume
rendering and isosurface rendering, by considering the user con-
figurations. Various volume visualization methods can utilize
the query interfaces to directly query value and gradients from
the MFA model to construct the visual representation. In this
paper, the MFA-VV is ray-casting-based volume visualization
utilizing the over operation between the neighboring samples
on the ray segment. The rendering time is the main contributor
to the final input latency. The complexity of rendering time is
O(n) where n is the number of queries for value and gradient
within the volume space. Since such queries of a functional
approximation are expensive, as discussed in Section III-C, we
parallelize the rendering pipeline on m computing cores such
that each node only needs to perform n/m queries to finish
its rendering of the local block. This approach significantly
accelerates the rendering time on multiprocessor systems,
thereby reducing the overall input latency of visualizing large-
scale MFA models. The output of MFA-VV from each node is
a partially-rendered image that must be aggregated with other
images for the final resulting image.

5) Image Compositing: Partially-rendered images of parti-
tioned blocks are combined together to construct the final image.
Our image compositing utilizes the associative property of the
over operation. As long as the distances of the two images to
the viewpoint are comparable, the correct composited image
can be obtained through the over operation in the pixel level of
the two images. Image compositing requires communications
between nodes for exchanging pixels, and the compositing time
is determined by the resolution of the final image and how
many nodes are involved in the compositing process. We utilize
binary-swap to schedule the communication between nodes
efficiently [39]. After the compositing, only a subset of the total
pixels of each composited image are correct. Section V-C will
investigate the compositing time with respect to the number
of nodes employed for this task.

6) Image Merging: Correct pixels from each node are sent
to the master node for concatenation into the final volume
visualization image. Section V-C will also reveal how the image
merging time scales when the number of nodes increases.

B. Implementation

During the course of the MFA-DVV pipeline, Steps 1
and 2 (i.e., volume partitioning and MFA encoding) are
preprocesses done before the visualization. The visualization
pipeline is from Step 3 (i.e., data fetching) to 6 (i.e., image
merging) and executes in response to every data-dependent
(e.g., changing transfer functions) or view-dependent (e.g.,
change view parameters) operation by the user. The parallel
library we used to execute MFA encoding, data fetching,
MFA-VV, and image compositing is DIY (”Do-It-Yourself”
Parallel Analysis) [24], which is a block-parallel library for
implementing scalable distributed- and shared-memory parallel
algorithms that can run both in- and out-of-core. DIY supports
data distribution in parallel through its write and read I/O
functions, which are utilized for an MFA model writing to
storage after encoding and data fetching from storage to system
memory of each node. The binary-swap image compositing
algorithm can be readily integrated by leveraging DIY’s merge-
reduce mechanism for managing communication. In addition,
our MFA-DVV provides a user interface so that users can
freely adjust data-dependent (e.g., setting for transfer functions
and shading parameters) and view-dependent (e.g., exploring
view parameters) operations. The setting of all operations will
be passed to MFA-DVV for generating the corresponding
visualization as desired.

V. RESULTS AND EVALUATION

We design and conduct comprehensive experiments to
evaluate the scalability and performance of the MFA-DVV.
Additionally, we explore the impact of essential MFA encoding
parameters on these factors.

A. Datasets

1) Synthetic Datasets: We use the Marschner-Lobb synthetic
function to gain an accurate ground-truth reference for volume
rendering. Marschner-Lobb is a function initially introduced
for evaluating 3D resampling filters when applied to the con-
ventional Cartesian cubic lattice [22]. We create corresponding
discrete datasets derived from the Marschner-Lobb function to
serve as the input for MFA-DVV and other discrete volume



rendering algorithms. Accurately reconstructing a Marschner-
Lobb signal from discrete samples is challenging due to its
complex amplitude distribution across various frequencies. This
complexity makes it a valuable benchmark for evaluating
reconstruction quality. The Marschner-Lobb function FML used
in this paper is defined as:

FML(x,y,z) =
1− sin(πz

2 )+α(1+ρr(
√

x2 + y2))

2(1+α)
(1)

where
ρr(r) = cos(2π fM cos(

πr
2
))

We use fM = 6 and α = 0.25 to generate discrete Marschner-
Lobb datasets with different resolutions. The spatial boundaries
on each dimension are [0,7].

2) Regular Real Datasets: We further evaluate the rendering
quality of MFA-DVV using real discrete datasets. These
datasets are rendered using MFA models encoded at various
compression levels. Specifically, we showcase the rendering
quality on small datasets, such as Fuel and Nucleon, with
sizes of 413 and 643, respectively. Fuel represents a simulation
of fuel injection into a combustion chamber, while Nucleon
simulates the two-body distribution probability of a nucleon in
an atomic nucleus. Additionally, we examine larger datasets,
Aneurysm and Bonsai, both with sizes of 2563. Aneurysm
represents a rotational angiography scan of a head with an
aneurysm, while Bonsai is a CT scan of a bonsai tree. The
spatial boundaries for all the real datasets in each dimension
range from 0 to 255.

3) Large-scale Real Dataset: The large-scale scientific
dataset used to test the capability of MFA-DVV is the
Richtmyer-Meshkov Instability (RMI) simulation [7]. The
Richtmyer-Meshkov instability arises when a shock wave
interacts with an interface separating two different fluids. The
original time-varying RMI dataset is over 2TB. The input
volume we use is the 160th time step with a spatial resolution
of 1024×1024×1024.

B. Experiment Setup

We run experiments using MFA-DVV on the Swan cluster
at the Holland Computing Center (HCC) of the University
of Nebraska-Lincoln. Swan is a massively parallel processing
system with 9408 computing cores. There are 168 nodes in
total, and each node has an Intel Xeon Gold 6348 CPU (56
cores) with 256GB RAM. Swan provides high-performance,
low-latency communication for MPI jobs. We run our job in
parallel using different processor numbers ranging from 1 to
1024. Due to the nature of the binary partition of the input
data, the number of processors used is 2n, where n is the times
of partitions executed. Our test uses n from 1 to 10.

C. Scalability of MFA-DVV

We perform the scalability test of MFA-DVV using the
Marschner-Lobb dataset. The testing volume is a scalar field
with a spatial resolution of 256×256×256 with the float32
data type. We first preprocess the input discrete data with data

(a) Data fetching time (b) Rendering time

(c) Image compositing time (d) Image merging time

(e) Total input latency

Fig. 3: Time breakdown of MFA-DVV rendering pipeline and
total input latency.

partitioning and MFA encoding. The input data is encoded
by MFA also using 256x256x256 control points, which is the
same as the size of the input discrete sample of the dataset.
The polynomial degree of the MFA encoder is set to 2 for
non-linear approximation. Table I shows the partitioned block
size, the number of control points for MFA encoding, and the
parallel core counts with respect to the partition patterns. For
high-quality visualization, a fine sample step is used for the
ray-casting rendering step of MFA-DVV. The resolution of the
final rendering image is 768×768. The total input latency of
MFA-DVV on a large-scale dataset depends on the visualization
time in its pipeline, including data fetching latency, MFA-VV
rendering time, image compositing time, and image merging
time. We summarize the time measurement for each of the
four components and total input latency in Figure 3. From the
results, we can see that, for a general size volume, the main
contributor to the input latency of MFA-DVV is the rendering
time, as the times used in other states are comparably much
smaller. The scalability results when handling large-scale data
will be investigated in the next section.

The data fetching time depends on the size of the MFA
model encoded for each partitioned block. Since the number
of control points used for encoding the MFA model is the
same as the size of the samples of input partitioned blocks, the
MFA model has the same size as the input block. As the size
of the blocks goes down together with the MFA model when
using more processes, data prefetching time also decreases.



TABLE I: Setting of volume partition and number of MFA control points with respect to the partition patterns.

Partition 1×1×1 2×1×1 2×2×1 2×2×2 4×2×2 4×4×2 4×4×4 8×4×4 8×8×4 8×8×8 16×8×8

Block Size 256×256×256 128×256×256 128×128×256 128×128×128 64×128×128 64×64×128 64×64×64 32×64×64 32×32×64 32×32×32 16×32×32

Ctrl Points 256×256×256 128×256×256 128×128×256 128×128×128 64×128×128 64×64×128 64×64×64 32×64×64 32×32×64 32×32×32 16×32×32

Cores 1 2 4 8 16 32 64 128 256 512 1024

Because the dataset used here is relatively small in size, and
the partitioned blocks can become very small (e.g., as small
as 64KB) as more processes are used, it reaches the saturation
points of the I/O interfaces, as shown in Figure 3a. For a large-
scale dataset, the data fetching time still scales well because
the partitioned data block will not reach such a small limit in
file size.

The rendering time scales with the number of processes as
shown in Figure 3b for its computational cost are distributed
evenly across all parallel processing nodes.

Figure 3c shows the image compositing time. More commu-
nications are involved when more processes are used, as more
images are needed for compositing. However, the compositing
time increases marginally as the number of process increases,
and each compositing operation between two images in each
round only perform one over operation compared to many
over operations executed in the MFA-VV step. As a result,
the compositing time is normally not comparable with the
rendering time.

The final image is merged in the master node by concate-
nating pixels sent from all the working nodes. As shown
in Figure 3d, the image merging time also scales with the
number of processes. More processes mean a smaller number
of pixels are transmitted to the master node for image merging.
Compared to the image compositing step that requires multiple
rounds of communication among all working nodes, image
merging only requires one communication between the working
nodes to the master node. Thus, the image merging time is
normally the fastest step of the pipeline.

By summing up all the time used in each step, Figure 3e
shows that the total input latency of MFA-DVV scales well
with respect to the number of processes, where the decreasing
rate of the measured total input latency is almost the same as
the ideal rate.

D. MFA-DVV using Compressed MFA Model

1) Quality Evaluation using Compressed Data: We quantita-
tively evaluate the rendering quality of MFA-DVV using com-
pressed MFA models compared with other popular compression
algorithms, including TTHRESH, ZFP, SZ3, and downsampling
(DS), in both image and volume domains. MFA-DVV generates
volume rendering results directly from the MFA model, while
the employment of other compression algorithms needs to
decompress data first and then render the decompressed discrete
data. The Marschner-Lobb dataset of the size 2563 is used as
the original data for compression. Figure 4a shows the image
quality PSNR scores on volume-rendered images with respect
to compression ratio. We observe that MFA-DVV always
gives better rendering quality than ZFP and DS. Its rendering

(a) Image space quality (b) Volume space quality

Fig. 4: Compression evaluation using MFA and other compres-
sion algorithms.
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Fig. 5: Volume rendering results under different compression
ratio (CR) using proposed MFA-DVV with compressed MFA
model and other volume compression algorithms.

result is better than SZ3 and TTHRESH for a compression
ratio of less than 70. For aggressive compression, SZ3 and
TTHRESH give better results than MFA-DVV. The volume-
rendered images with their PSNR scores under various levels
of compression ratio are shown in Figure 5. We can see that
MFA-DVV does not have high-frequency artifacts on the rings
of the ripple seen in other compression algorithms. This shows
the effectiveness of high-order value and gradient estimation
for off-grid locations, while other algorithms rely on linear
interpolation. For compression evaluation in the volume domain,
the reconstruction error is calculated by comparing values on
original discrete sample locations. As shown in Figure 4b, MFA-
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Fig. 6: MFA-DVV volume rendering results of MFA model with different compression ratio (CR) encoded using various
numbers of control points.
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Fig. 7: MFA compression ratio and data fetching time using
different numbers of control points and polynomial degree.

DVV always performs better than ZFP and better than DS for
higher compression ranges. However, SZ3 and TTRESH are
generally better than MFA-DVV. This means the MFA model
is not the best data compressor targeting reconstruction of data
values on-grid locations, which is what lossy floating-point
compressors are designed to do. However, MFA’s accurate query
of off-grid locations improves its volume rendering quality in
the image domain, as shown in Figure 4a, compensating for
its accuracy in the volume domain.

We also qualitatively evaluate the volume rendering using
real datasets under various levels of compression. The encoded

MFA model of the input discrete raw dataset is compressed by
adjusting the number of control points as shown in Figure 6.
The first column of the figure is the volume rendering result
using MFA-DVV without compression, where the number of
the control points is equal to the number of points of the input
discrete dataset. As the compression ratio (CR) increases, the
rendering quality decreases. For sparse datasets like Nucleon
and Fuel, although MFA-DVV using moderate compression
can capture the main structure of the data, the results have
noticeable errors compared to using an uncompressed model.
Because the Nucleon dataset is simpler than the Fuel dataset,
its result with a similar level of compression gives more faithful
results. However, due to the limited number of control points,
an extremely compressed MFA model results in inaccurate
volume rendering results, as shown in their right images. For
datasets with high resolutions, like Aneurysm and Bonsai,
the compression ratio can be more aggressive because there
are more sample points to describe the dynamics of the
data. As shown in the middle figures, the rendering error of
using moderate compression is not very noticeable. For high-
resolution data, the maximal compression ratio the MFA-DVV
can achieve is determined by the complexity of the specific
data.

2) MFA Parameter Study on Data Fetching Time: The num-
ber of control points is the main MFA parameter that determines



(a) Value query time (b) Gradient query time (c) Overall query time

Fig. 8: Query performance from MFA model for value and gradient using various number of control points. The overall query
time is the sum of the query times for value and gradient.

(a) Input loading I/O time (b) Rendering time (c) Total time

Fig. 9: Scalability of data fetching time, rendering time, and total time using various ways of information query.

(a) Trilinear (b) MFA-DVV (com-
pressed MFA model)

(c) Ground Truth

Fig. 10: Rendering results using trilinear interpolation, MFA-
DVV of compressed MFA model, and the ground truth.

the compression ratio of the MFA model. Specifically, as
shown in Figure 7a, the size of the compressed MFA model is
proportional to the number of control points used for encoding,
while the polynomial degree almost has no influence on the
size of the MFA model. As the MFA model decreases due to
compression, its data fetching time also decreases, as shown
in Figure 7b. This time-saving becomes more significant when
handling large-scale datasets.

3) MFA Parameter Study on Rendering Time: MFA model
encoded using fewer control points will give faster query times
for both value and gradient because fewer items (i.e., basis
functions and control points) are involved in the calculation.

TABLE II: Quantitative comparison of rendering quality
between trilinear and MFA-DVV using compressed MFA
model.

Methods MSE PSNR (dB) SSIM

Trilinear 205.46 25.00 0.89

MFA-DVV (Compressed) 50.76 31.08 0.96

General volume visualization needs to query both value and
gradient for better visualization with a shading effect. Thus,
faster queries with a compressed MFA model encoded with
fewer control points will reduce the rendering time. Figure 8
shows how the number of control points affects the query time
used to retrieve the value and gradient for a location of interest
within the domain.

4) Performance Evaluation: We now evaluate the perfor-
mance of MFA-DVV using a compressed MFA model encoded
from a large-scale dataset. The large-scale dataset is derived
from the Marschner-Lobb function with a spatial resolution
of 1024×1024×1024. We generate two MFA models, with
and without compression, respectively. The non-compressed
MFA model uses 1024× 1024× 1024 control points while
the compressed MFA model uses 256 × 256 × 256 control
points. Thus, the size of the compressed MFA model is 1/64
of the original dataset. We used various query methods for
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Fig. 11: Rendering of RMI large-scale dataset using MFA-DVV, where (a) is an overview of the data with an image resolution
of 4096×4096, and (b) to (f) show 5 zoom-in view with a 512×512 image resolution. Detail of the dataset can be clearly
observed, enhancing the comprehension of the large dataset.

performance comparison on rendering time. We consider the
most commonly used trilinear interpolation and two high-order
local filters which are tricubic and Catmull-Rom. Figure 9a
shows the data fetching scalability that depends on the size
of the input file, raw data, MFA model, and the compressed
MFA model. We can see that the compressed MFA model
saves considerable time on data fetching. Figure 9b shows the
rendering scalabity. All high-order approximations, two MFA
models, tricubic and Catmull-Rom, have longer rendering time
than trilinear interpolation. The MFA model is generally faster
than the other two high-order filters. Due to the computation
reduction, the compressed MFA model performs better than
the non-compressed version. As shown in Figure 9c, with the
help of improved data fetching latency and rendering latency,
MFA-DVV gives the best overall performance when rendering
a compressed MFA model. Figure 10 and Table II clearly show
that MFA-DVV not only surpasses the already fast trilinear
interpolation but also achieves more accurate rendering results.

E. Visualization Example

In Figure 11, we showcase the visualization result of the
MFA model encoded from a large-scale real dataset, RMI,
with an overall view and several zoom-in views. This dataset
boasts a high image resolution of 4096× 4096. The results
highlight the effectiveness of our high-resolution, high-precision
distributed solution of MFA-DVV, empowering scientists to
discern intricate details from vast amounts of data.

VI. CONCLUSIONS

We present MFA-DVV, a distributed volume visualization
framework to render large-scale scientific datasets modeled by
functional approximation. The proposed framework leverages
Multivariate Functional Approximation (MFA) to improve
rendering accuracy and achieve low input latency through
a distributed architecture. Compared to existing compression
methods, our MFA-DVV can balance better between image
space quality and volume space quality. We examine the
impact of essential MFA encoding parameters on both data



fetching latency and rendering latency. Experimental results
demonstrate that MFA-DVV showcases strong scalability, and
its performance can be significantly enhanced by utilizing a
compressed MFA model while still maintaining a high-quality
rendering result for scientific datasets. Our MFA-DVV has
provided scientists with high-quality and high-performance
visualization to gain more detailed observations from their big
scientific datasets. In the future, we would like to integrate
new data models like implicit neural representations into our
pipeline. Additionally, we are also interested in exploring
alternative volume visualization techniques, such as inverse
rendering, to offer diverse approaches for effectively visualizing
large-scale volumes in parallel.
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